
DhakaNet: Unstructured Vehicle Detection using
Limited Computational Resources

Tarik Reza Toha1, Masfiqur Rahaman2, Saiful Islam Salim3, Mainul Hossain4,
Arif Mohaimin Sadri5, and A. B. M. Alim Al Islam6

1,2,3,4,6Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
5University of Oklahoma, Norman, Oklahoma, USA

Email: {11017052013, 20421052008, 31018052067, 40421052047}@grad.cse.buet.ac.bd,
5sadri.buet@gmail.com, and 6alim razi@cse.buet.ac.bd

Abstract—Inefficient traffic signal control system is one of
the most important causes of traffic congestion in the cities of
developing countries such as Bangladesh, India, Kenya, etc. This
can be mitigated by adopting a decentralized traffic-responsive
signal system, where vehicle detection is performed on the
road through different image-based deep learning architectures
amenable to limited-resource embedded platforms as available
in developing countries. Deep learning architectures currently
available in this regard demand high computational resources
to achieve higher inference speed and better accuracy. Besides,
the few existing limited-resource deep learning architectural
alternatives neither attain higher inference speed nor substantial
accuracy due to not overcoming the inherent limitations. To this
extent, in this study, we propose a novel limited-resource deep
learning architecture, namely DhakaNet, for real-time vehicle
detection in on-road (street-view) traffic images. Our proposed
architecture leverages enhancing Cross-Stage Partial Network
and Path Aggregation Network to build the backbone and head
networks, respectively. Besides, we develop a novel multi-scale
attention module to extract multi-scale meaningful features from
the images, where the developed multi-scale attention module
boosts the detection accuracy at the cost of small overhead.
Rigorous experimental evaluation of our proposed DhakaNet over
three benchmark street-view traffic datasets such as DhakaAI,
IITM-HeTra-A, and IITM-HeTra-B shows up to 51% faster
inference speed at a similar accuracy, or up to 13% higher
accuracy at a similar inference speed compared to other state-of-
the-art limited-resource deep learning architectural alternatives.

Index Terms—Traffic congestion, Vehicle detection, Deep learn-
ing, Computer vision, Embedded systems

I. INTRODUCTION

Traffic congestion is one of the most severe challenges
for the cities of developing countries such as Bangladesh,
India, and Kenya. According to the World Bank Report [1],
the average driving speed in Dhaka, i.e., the capital city of
Bangladesh, is 7 kilometers per hour (kph), which is expected
to be 4 kph (slower than walking speed) by 2035. Moreover,
traffic congestion in Dhaka wastes about 3.2 million working
hours daily and billions of dollars of the national economy
annually [1]. In order to reduce traffic congestion, one of
the most effective approaches is to adopt a traffic-responsive
signal control system, i.e., schedule traffic signal based on
current vehicular density at signalized intersections [2]. This
approach requires real-time traffic density information, which
can be captured through different image-based deep learning
architectures [3], [4].

Most of the existing image-based learning architectures
capture on-road traffic images and upload them to the cloud
for necessary processing tasks such as vehicle detection [5],
[6]. However, these cloud-based solutions demand high-speed
network connectivity, which is not always available across all
road intersections in developing countries [7], [8]. Hence, a
decentralized approach needs to be adopted, where vehicle
detection is performed in the embedded platforms and only the
vehicle count is uploaded to the cloud. This approach alleviates
the demand of high-speed network, however, imposes severe
computational constraints (inherited from the embedded plat-
forms) on the learning models. This happens as the state-of-
the-art deep learning architectures demand high computational
resources (GPUs) to provide faster and more accurate detec-
tion, where limited computational resources result in slower
and less accurate detection [7], [9]. A few deep learning archi-
tectures such as YOLOv4-tiny [10] and YOLOv5-small [11]
have recently been proposed for the resource-constrained envi-
ronment, however, they cannot achieve either faster inference
speed or more accurate detection in the embedded platforms.

As a remedy for the problems mentioned above, in
this paper, we propose a novel deep learning architecture
named DhakaNet for faster and more accurate vehicle detec-
tion using limited computational resources. To do so, first, we
analyze the limitations of existing low-resource deep learning
architectures. To overcome the limitations, we modify the
existing Cross-Stage Partial Network [12] and Path Aggrega-
tion Network [13] to build our backbone and head networks
respectively. Besides, we develop a novel multi-scale attention
module that extracts multi-scale meaningful features from the
images. This module boosts detection accuracy using a small
overhead. We evaluate the performance of DhakaNet against
two state-of-the-art low-resource deep learning architectures
namely YOLOv4-tiny [10] and YOLOv5-small [11] over three
different benchmark traffic datasets namely DhakaAI [14],
IITM-HeTra-A [15], and IITM-HeTra-B [15] using an em-
bedded system named Raspberry Pi. Based on our work, we
make the following set of contributions: 1) We propose a novel
low-resource deep learning architecture namely DhakaNet for
faster and more accurate vehicle detection in street-view traffic
images. 2) We develop a new multi-scale attention module to
extract scale-aware and meaningful features from the traffic
images. 3) Performance evaluation of DhakaNet against state-
of-the-art low-resource architectures over three benchmark

1367

2021 IEEE International Conference on Data Mining (ICDM)

2374-8486/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDM51629.2021.00172

street-view traffic datasets using a Raspberry Pi confirms up
to 51% faster inference speed at a similar accuracy, or up to
13% higher accuracy at a similar inference speed.

II. RELATED WORK

Traffic density estimation is the crucial component of an
automated traffic monitoring system. Over the last few years,
with the help of image-based deep learning approaches, re-
searchers achieved promising results on counting and detecting
vehicles from traffic camera images, from which the traffic
density information can be estimated [3]. In this regard,
researchers have proposed various general object detection
models in the literature to get classified vehicle count from
traffic images in real-time. Now, we describe some of the
object detection models chronologically.
A. Basic Object Detection Models

Ren et al., [16] proposed a real-time two-stage object
detection model using region proposal networks named Faster
R-CNN that was used in several traffic detection studies [8],
[15]. Although this model achieves high accuracy, it requires
high computational resources such as GPUs for faster infer-
ence. Hence, it cannot be used in a decentralized adaptive
traffic control system. To increase inference speed, Redmon et
al., [17] proposed a unified one-stage real-time object detection
model named YOLO (You Only Look Once). This model
applies a single neural network to the whole image, divides
the image into rectangular grid regions, and predicts bounding
boxes and probabilities for each region. Due to its simple ar-
chitecture, it achieves much faster inference speed than Faster
R-CNN. Hence, it can be used in real-time traffic detection [7].
However, the accuracy of YOLO drops slightly due to fast
inference. To achieve a better trade-off between accuracy and
inference speed, Liu et al., [18] proposed a single shot multi-
box detector named SSD that runs a convolutional network on
input image only once and computes a feature map. Besides,
Howard et al., [19] proposed an efficient convolutional neural
network for mobile vision applications named MobileNet
that requires much lower computational resources for object
detection. Hence, the combination of MobileNet-SSD can be
a good choice used for a decentralized adaptive traffic signal
control system as suggested by Chauhan et al., [7]. However,
the accuracy of such a model is not satisfactory. Next, we
review some latest deep learning architectures that achieve
both faster inference speed and higher accuracy.
B. Advanced Object Detection Models

Tan et al., [20] proposed a scalable and efficient ob-
ject detection model named EfficientDet that improves both
the accuracy and efficiency of object detection. However,
it demands high computational resources such as GPUs for
faster inference speed and higher accuracy. To achieve more
efficiency, Bochkovskiy et al., [21] proposed YOLOv4 that
achieves optimal speed and accuracy in object detection.
However, it demands high-end devices similar to EfficientDet.
Later, Wang et al., [10] proposed Scaled-YOLOv4 through
scaling cross-stage partial network. Here, scaling the network

means the modification of network depth, width, resolution,
and structure. They provided both large models for high-
end (GPU) devices and tiny models for low-end embedded
systems. However, the YOLOv4-tiny requires a longer in-
ference time in embedded systems due to its architectural
limitations. Hence, it does not apply to a decentralized adaptive
traffic control system. Similar to this scaled model, Jocher et
al., [11] proposed a scalable model named YOLOv5 that can
easily be adapted for both GPU-based and embedded system-
based applications. Although it achieves a higher inference
speed in embedded systems, its accuracy decreases due to its
architectural issues.

The literature survey shows that existing deep learning
architectures trade off the object detection accuracy for infer-
ence speed. Although faster inference speed is required in a
resource-constrained environment, detection accuracy cannot
be sacrificed to make the model applicable in real-world
scenarios.

III. PROPOSED DHAKANET ARCHITECTURE

Our DhakaNet architecture has two parts namely backbone
network and head network. The backbone network extracts
low-level information from raw images and forwards them to
the head network. The head network learns high-level informa-
tion and detects our desired vehicles from the traffic images.
Figure 1 shows the block diagram of DhakaNet architecture
with their inter-connectivity. Here, the modules written in
red font indicate the innovative changes made over existing
architectures. Next, we describe DhakaNet architecture in
detail.
A. Backbone Network

We design our backbone network through modifying the
structure of the existing Cross-Stage Partial Network (CSP)
module. This module can extract richer gradient information
using a minimal amount of computation. Figure 2a shows
the block diagram of a modified CSP module (mCSP) used
in DhakaNet. Here, an mCSP module contains one residual
module (also known as a bottleneck), three point convolution
layers having 1× 1 kernels, and a feature concatenation layer.
In a residual block, one point convolution layer is used before
a 3 × 3 convolution layer to compress the feature represen-
tation that enhances the learning ability of the network [22].
Besides, the output of the residual layer is concatenated with
input layers through a point convolution layer. Moreover, the
concatenated output is further summarized using another point
convolution layer. Thus, this module extracts rich information
from the network. Note that, existing CSP module contains
one or more bottleneck blocks, whereas we use one or zero
bottleneck blocks in our mCSP module.

We use several mCSP modules after every down-sampling
step. In Figure 2a, mCSP-32-B denotes a modified CSP
module having one bottleneck and mCSP-32 denotes a similar
modified CSP module without using a bottleneck. Besides,
Conv-32-1-1 denotes a convolution layer having 32 filters,
1× 1 kernel size, and 1 stride. We use strided convolution to
down-sample the images instead of a max-pooling operation,

1368

Focus-64

Conv-128-3-2

mCSP-128-B

Conv-256-3-2

3 × mCSP-256-B

Conv-512-3-2

3 × mCSP-512-B

Conv-1024-3-2

mCSP-1024

UpSample-2

Conv-512-1-1

mCSP-512

Concatenate

Conv-256-1-1

UpSample-2

Concatenate mCSP-256

MSAM-256-(3,5,7)

Input

Detect-small

Concatenate

Conv-256-3-2

MSAM-512-(5,7,9)

mCSP-512

Conv-512-3-2

Detect-medium

Concatenate

MSAM-1024-(7,9,11)

mCSP-1024 Detect-large

Backbone

Neck

Head

Fig. 1: Block diagram of our proposed DhakaNet architecture

Conv-32-1-1

Conv-32-1-1

Conv-32-1-1

Conv-16-1-1

Conv-32-3-1

+

Bottleneck

Concatenate

Input

Output

N × mCSP-32-B Module

Residual layer

Conv-32-1-1

Conv-32-1-1

Conv-32-1-1

Concatenate

Input

Output

N × mCSP-32 Module

(a) Modified Cross-Stage Partial Network

P1

P2

P3

P4

P5

P4

P3

P4

P5

(b) Modified Path Aggregation Network

Fig. 2: Block diagram of modified Cross-Stage Partial Network and modified Path Aggregation Network

which increases the learning capacity of the network. At the
beginning of the backbone, we use a focus layer to reduce
input image resolution quickly through rearranging blocks of
spatial data into depth axis followed by a convolution layer.
Besides, in the last down-sampled stage, we do not use any
bottleneck in the mCSP modules to reduce computation. Note
that, we use batch normalization after each convolution and
before activation to stabilize training, speed up convergence.
Besides, we use Sigmoid Linear Unit (Swish) [23] layer as
the activation function of our architecture. Next, we describe
the head network.

B. Head Network

We design our head network through modifying the existing
Path Aggregation Network (PANet) as the neck of DhakaNet.
This network fuses the upper-level features (semantically
weak) with lower-level features (semantically strong) effi-
ciently. Our modified PANet (mPANet) adds an extra edge
from the original input to the output node shown in red-
colored dotted line in Figure 2b. It fuses more features with
minimal overhead, which boosts the accuracy of our limited-
resource architecture. To implement this mPANet, we change

Input

mSPP-32-(3,5,7) Block

mCAM-32 Block

SAM-32 Block

Output

MSAM-32-(3,5,7)

×

×

Fig. 3: Block diagram of a multi-scale attention module along
with constituent blocks

the internal network resolution through up-sampling or down-
sampling operation and concatenate features from different
levels.

After this feature fusion, we use three novel multi-scale
attention modules (MSAM) and several mCSP modules. As
DhakaNet utilizes a limited-resource network, it is very dif-
ficult to learn semantically rich features from the network.
Hence, modifying some state-of-the-art plug-in modules, we

1369

develop the MSAM modules to increase the feature represen-
tation power of DhakaNet. Figure 3 shows the block diagram
of an MSAM that contains a series of three plug-in modules
such as modified spatial pyramid pooling module (mSPP),
modified channel attention module (mCAM), and spatial at-
tention module (SAM). Although we use mPANet to fuse
global features across the whole network, fusing local features
within the same convolution layer is necessary to improve
the accuracy of the network that can be performed using the
SPP blocks [24]. Besides, we exploit attention modules to
emphasize meaningful features explicitly, as DhakaNet cannot
learn proper feature distribution due to the small computational
budget [25]. Our proposed mSPP block consists of two max-
pooling layers and one average pooling layer with different
kernel sizes. Note that, in the state-of-the-art approaches [11],
[21], no average pooling is used in the SPP block, although
average pooling is another important operation to extract
distinctive features.

We use the MSAM module before each detection layer such
that it can learn more discriminative information from the net-
work. The kernel sizes of MSAM depend on feature resolution.
In a higher resolution, we use smaller kernel sizes to facilitate
small vehicle detection. Similarly, in lower resolution, we use
larger kernel sizes for large vehicle detection. Note that, we
use the anchor-based YOLOv5 detection layers [11] for our
detection purpose.

IV. TRAINING METHOD

We prepare the ground truth of the traffic images using
conventional box labels. Next, we set the parameters of data
augmentation and training configuration. Now, we describe
these steps in detail.
A. Data Augmentation

We use several data augmentation techniques to improve
the performance of the DhakaNet model. During the training
stage, we randomly change the hue, saturation, and brightness
value of the images. Besides, we use translation, horizontal
flip, and mosaic [21] data augmentation techniques. Note
that, we do not use rotation, vertical flip, and cutmix [21]
data augmentation techniques, since they are irrelevant to our
intended traffic detection problem.
B. Training Details

We use a straightforward way to train the DhakaNet ar-
chitecture in an end-to-end manner. For this purpose, we
use a multi-component loss function that consists of three
components such as bounding box regression loss, objectness
loss, and classification loss. We use Complete Intersection
over Union loss (CIoU) [26] to regress the parameter of
the bounding boxes. Besides, we use binary cross-entropy
loss for objectness and classification losses. As we have
multiple classes in the images, we use a multi-hot encoding
technique to estimate the classification loss using binary cross-
entropy. To optimize the loss function, we use stochastic
gradient descent algorithm along with default parameters used
in YOLOv5 [11]. We implement our DhakaNet architecture
using PyTorch framework [11]. We use 25% of training images

TABLE I: Datasets used for performance evaluation

Attribute DhakaAI IITM-HeTra-A IITM-HeTra-B
Traffic Unstructured Unstructured Unstructured

Location Dhaka, BD Chennai, India Chennai, India
Train-Test split 3000 : 500 1201 : 216 1201 : 216

of object classes 21 3 4

as the validation dataset to save the best model based on
validation accuracy. Besides, we resize all images to 768×768
pixels during both training and testing stages.

V. EXPERIMENTAL EVALUATION

In this section, first, we describe the experimental setup and
traffic datasets used for the experimental evaluation. After that,
we present the performance comparison and ablation study in
detail.
A. Experimental Setup

For training purpose, we use a Ubuntu 20.04 desktop
having 8 Intel Core i7-7700 CPUs (3.60 GHz) and 16 GB
main memory. To accelerate the training process, we use one
GeForce GTX 1070 GPU having 8 GB memory. On the other
hand, we use a Raspberry Pi 4 Model B for testing purpose.
Our Raspberry Pi has 4 Cortex-A72 (ARMv7) CPUs (1.5
GHz) and 4 GB main memory. Note that, we do not use
any embedded GPU in our Raspberry Pi. Hence, it serves
as a limited-resource computing system for our experimental
evaluation.
B. Traffic Datasets

We evaluate our proposed DhakaNet architecture on three
traffic datasets namely DhakaAI [14], IITM-HeTra-A [15],
and IITM-HeTra-B [15]. DhakaAI dataset contains non-lane-
based heterogeneous road traffic images of Dhaka city. As the
vehicles in Dhaka do not follow lane discipline, the images
of DhakaAI contain severe occlusion that makes the detection
more challenging. Besides, the dataset has images from both
day and night. This dataset has 3000 training images and 500
test images. Besides, it has 21 different classes of vehicles
containing both motorized and human-powered vehicles. Note
that, there is no ground-truth available for DhakaAI test
images, hence, we manually label these images.

IITM-HeTra datasets contain similar unstructured traffic
images of Chennai city. Both of them have 1201 training and
216 testing images. IITM-HeTra-A has 3 different classes of
vehicles and IITM-HeTra-B has 4 different classes of vehicles.
Note that, all vehicles of IITM-HeTra images are motorized.
We summarize the demography of the aforementioned datasets
in Table I.
C. Evaluation Results

We compare the performance of DhakaNet against two
recent limited-resource deep learning architectures such as
YOLOv4-tiny [10] and YOLOv5-small [11] on three traffic
datasets. DhakaNet outperforms both of them in terms of
either faster inference speed, or higher accuracy. Note that,
we average the results over five iterations for a particular
training configuration in the performance evaluation, as the
neural network possesses stochastic nature by default. Besides,

1370

TABLE II: Performance comparison of DhakaNet against YOLOv4-tiny [10] and YOLOv5-small [11] over DhakaAI [14] and
IITM-HeTra datasets [15]

Dataset Model Scaling factor mAP@0.5 (%) mAP@0.5:0.95 (%) Inference time (s) FPS

DhakaAI [14]

YOLOv4-tiny [10] N/A 16.2 7.2 27.8 0.04
YOLOv5-small [11] 0.50 8.7 (±0.3) 4.3 (±0.2) 7.4 0.14

DhakaNet 0.29 9.9 (±0.3) 5.0 (±0.1) 6.7 0.15
DhakaNet-scaled 0.23 8.9 (±0.2) 4.5 (±0.1) 4.9 0.20

IITM-HeTra-A [15]

YOLOv4-tiny [10] N/A 95.9 47.2 30.0 0.03
YOLOv5-small [11] 0.50 94.6 (±1.6) 50.8 (±1.4) 5.6 0.18

DhakaNet 0.29 95.8 (±1.3) 52.2 (±1.0) 5.0 0.20
DhakaNet-scaled 0.23 95.5 (±0.6) 51.9 (±1.1) 3.7 0.27

IITM-HeTra-B [15]

YOLOv4-tiny [10] N/A 95.4 48.2 29.9 0.03
YOLOv5-small [11] 0.50 94.7 (±1.2) 50.8 (±1.4) 5.6 0.18

DhakaNet 0.29 95.4 (±0.2) 52.5 (±0.7) 5.0 0.20
DhakaNet-scaled 0.23 95.6 (±0.9) 52.5 (±0.4) 3.7 0.27

TABLE III: Ablation studies of DhakaNet over DhakaAI dataset [14]

Model mCSP mPANet MSAM Scaling mAP@0.5 (%) mAP@0.5:0.95 Inference FPSfactor (%) time (s)
DhakaNet-α No No No 0.29 7.6 (±0.5) 3.8 (±0.4) 3.6 0.28
DhakaNet-β Yes No No 0.29 8.3 (±0.5) 4.1 (±0.2) 5.8 0.17
DhakaNet-γ Yes Yes No 0.29 8.8 (±0.7) 4.3 (±0.5) 6.0 0.17

DhakaNet-final Yes Yes Yes 0.29 9.9 (±0.3) 5.0 (±0.1) 6.7 0.15

(a) Out# 1: YOLOv5-small (b) Out# 1: DhakaNet (c) Out# 2: YOLOv5-small (d) Out# 2: DhakaNet

Fig. 4: Qualitative analysis between YOLOv5-small [11] and DhakaNet over two challenging test images in DhakaAI dataset

we train all models from the scratch for a fair comparison.
Moreover, we set our confidence threshold to 0.3, i.e., the de-
tection having lower than 30% confidence score gets ignored.
Next, we present the performance evaluation results over three
different datasets.

1) DhakaAI Dataset: Table II shows the performance eval-
uation results of DhakaNet against YOLOv4-tiny [10] and
YOLOv5-small [11] over DhakaAI dataset [14]. Here, we
can see that YOLOv4-tiny requires 27.8 seconds for detect-
ing vehicles per image on average, which is not a realistic
solution for a decentralized adaptive traffic control system.
Our proposed DhakaNet achieves 13% higher accuracy at a
similar inference speed compared to YOLOv5-small. Besides,
the down-scaled version of DhakaNet achieves 50% faster
inference speed at a similar accuracy. Hence, DhakaNet out-
performs the existing YOLOv5-small in terms of either faster
inference speed, or higher accuracy.

2) IITM-HeTra Datasets: We show the performance eval-
uation results of DhakaNet on IITM-HeTra datasets [15] in
Table II. For both datasets, we can see that YOLOv4-tiny
requires a much longer inference time on average, which is not
a pragmatic solution as described before. On the other hand,
our proposed DhakaNet and DhakaNet-scaled achieve 51%
faster inference speed and similar accuracy on both IITM-

HeTra datasets compared to YOLOv5-small.
3) Ablation Studies: To analyze the effectiveness of our

proposed modules of DhakaNet, we conduct an ablation study
of DhakaNet over DhakaAI dataset [14]. For this purpose,
we turn on mCSP, mPANet, and MSAM modules sequentially
and evaluate corresponding accuracy and speed. The ablation
results are delineated in Table III. Here, we can see that
DhakaNet having all the three modules achieves the highest
accuracy among all the other alternative variants. Note that,
the speed is getting dropped because of adding new modules
to DhakaNet architecture.
D. Qualitative Analysis

Figure 4 shows the detections of YOLOv5-small [11] and
DhakaNet over two challenging test images of DhakaAI
dataset. For severe occlusion, DhakaNet performs much better
than YOLOv5-small. Besides, in the night scene, YOLOv5-
small misses all vehicles whereas DhakaNet detects several
vehicles.

VI. CONCLUSION AND FUTURE WORK

Decentralized traffic-responsive signal system is one of
the possible solutions to traffic congestion in the cities of
developing countries. It requires on-road vehicle detection us-
ing limited-resource image-based deep learning architectures.
However, existing low-resource architectures exhibit either low

1371

inference speed or low detection accuracy due to their inherent
limitations. Hence, we propose a new architecture named
DhakaNet for faster and more accurate vehicle detection using
embedded systems through enhancing Cross-Stage Partial Net-
work and Path Aggregation Network as well as adding several
novel multi-scale attention modules. We evaluate our proposed
DhakaNet against two state-of-the-art limited-resource deep
learning architectures over three unstructured traffic datasets
such as DhakaAI, IITM-HeTra-A, and IITM-HeTra-B on a
Raspberry Pi. DhakaNet confirms up to 50% faster inference
speed at a similar accuracy, or up to 13% higher accuracy at a
similar inference speed compared to the other state-of-the-art
approaches. In the future, we plan to integrate DhakaNet in a
real traffic signaling module and deploy the complete system
in real-world.

ACKNOWLEDGMENT

This research work was conducted under a fellowship
from the ICT Division, Government of the People’s Republic
of Bangladesh. Besides, the Department of CSE, BUET is
thankfully acknowledged for providing the GPU and other
necessary support for this research work.

REFERENCES

[1] J. Bird, Y. Li, H. Z. Rahman, M. Rama, and A. J. Venables, Toward
Great Dhaka : A New Urban Development Paradigm Eastward.
Washington, D.C., USA: The World Bank, 2018. [Online]. Available:
https://doi.org/10.1596/978-1-4648-1238-5

[2] Y. Wang, X. Yang, H. Liang, and Y. Liu, “A Review of the
Self-Adaptive Traffic Signal Control System Based on Future Traffic
Environment,” Journal of Advanced Transportation, vol. 2018, June
2018. [Online]. Available: https://doi.org/10.1155/2018/1096123

[3] J. Chung and K. Sohn, “Image-Based Learning to Measure Traffic
Density Using a Deep Convolutional Neural Network,” Transactions
on Intelligent Transportation Systems (ITS), vol. 19, no. 5, pp.
1670–1675, May 2018. [Online]. Available: https://doi.org/10.1109/
TITS.2017.2732029

[4] D. Biswas, H. Su, C. Wang, A. Stevanovic, and W. Wang, “An
Automatic Traffic Density Estimation using Single Shot Detection
(SSD) and MobileNet-SSD,” Physics and Chemistry of the Earth,
Parts A/B/C, vol. 110, pp. 176–184, April 2019. [Online]. Available:
https://doi.org/10.1016/j.pce.2018.12.001

[5] W.-H. Lee and C.-Y. Chiu, “Design and Implementation of a
Smart Traffic Signal Control System for Smart City Applications,”
Sensors, vol. 20, no. 2, January 2020. [Online]. Available: https:
//doi.org/10.3390/s20020508

[6] J. Nubert, N. G. Truong, A. Lim, H. I. Tanujaya, L. Lim, and M. A. Vu,
“Traffic Density Estimation using a Convolutional Neural Network,”
National University of Singapore, Tech. Rep., 2018. [Online]. Available:
https://arxiv.org/abs/1809.01564

[7] M. S. Chauhan, A. Singh, M. Khemka, A. Prateek, and R. Sen,
“Embedded CNN Based Vehicle Classification and Counting in
Non-Laned Road Traffic,” in Proceedings of the 10th International
Conference on Information and Communication Technologies and
Development (ICTD). Ahmedabad, India: ACM, January 2019, pp.
1–11. [Online]. Available: https://doi.org/10.1145/3287098.3287118

[8] C. Yeshwanth, P. S. A. Sooraj, V. Sudhakaran, and V. Raveendran,
“Estimation of Intersection Traffic Density on Decentralized
Architectures with Deep Networks,” in Proceedings of the
3rd International Smart Cities Conference (ISC2). Wuxi,
China: IEEE, September 2017, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/ISC2.2017.8090799

[9] Q. Mao, H. Sun, Y. Liu, and R. Jia, “Mini-YOLOv3: Real-
Time Object Detector for Embedded Applications,” IEEE Access,
vol. 7, pp. 133 529–133 538, September 2019. [Online]. Available:
https://doi.org/10.1109/ACCESS.2019.2941547

[10] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-YOLOv4:
Scaling Cross Stage Partial Network,” in Proceedings of the 34th
International Conference on Computer Vision and Pattern Recognition
(CVPR). Nashville, TN, USA: IEEE, June 2021, pp. 13 029–13 038.
[Online]. Available: https://arxiv.org/abs/2011.08036

[11] G. Jocher et al., “YOLOv5: Ultralytics LLC,” https://github.com/
ultralytics/yolov5, last accessed on June 11, 2021.

[12] C. Wang, H. Mark Liao, Y. Wu, P. Chen, J. Hsieh, and I. Yeh,
“CSPNet: A New Backbone that can Enhance Learning Capability
of CNN,” in Proceedings of the 33th International Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW).
Seattle, WA, USA: IEEE, June 2020, pp. 1571–1580. [Online].
Available: https://doi.org/10.1109/CVPRW50498.2020.00203

[13] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path Aggregation Network
for Instance Segmentation,” in Proceedings of the 31st International
Conference on Computer Vision and Pattern Recognition (CVPR).
Salt Lake City, UT, USA: IEEE, June 2018, pp. 8759–8768. [Online].
Available: https://doi.org/10.1109/CVPR.2018.00913

[14] A. Shihavuddin and M. R. A. Rashid, “DhakaAI 2020,” https://doi.org/
10.7910/DVN/POREXF, last accessed on June 11, 2021.

[15] D. Mittal, A. Reddy, G. Ramadurai, K. Mitra, and B. Ravindran,
“Training a Deep Learning Architecture for Vehicle Detection
Using Limited Heterogeneous Traffic Data,” in Proceedings of the
10th International Conference on Communication Systems Networks
(COMSNETS). Bengaluru, India: IEEE, January 2018, pp. 589–294.
[Online]. Available: https://doi.org/10.1109/COMSNETS.2018.8328279

[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks,”
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
vol. 39, no. 6, pp. 1137–1149, June 2017. [Online]. Available:
https://doi.org/10.1109/TPAMI.2016.2577031

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” in Proceedings of the 29th
International Conference on Computer Vision and Pattern Recognition
(CVPR). Seattle, WA, USA: IEEE, June 2016, pp. 779–788. [Online].
Available: https://doi.org/10.1109/CVPR.2016.91

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single Shot MultiBox Detector,” in Proceedings
of the 14th European Conference on Computer Vision (ECCV).
Amsterdam, Netherlands: Springer, September 2016, pp. 21–37.
[Online]. Available: https://doi.org/10.1007/978-3-319-46448-0 2

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,”
arXiv, Tech. Rep. 1704.04861, April 2017. [Online]. Available:
https://arxiv.org/abs/1704.04861

[20] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and Efficient
Object Detection,” in Proceedings of the 33th International Conference
on Computer Vision and Pattern Recognition (CVPR). Seattle, WA,
USA: IEEE, June 2020, pp. 10 778–10 787. [Online]. Available:
https://doi.org/10.1109/CVPR42600.2020.01079

[21] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4:
Optimal Speed and Accuracy of Object Detection,” arXiv, Tech. Rep.
2004.10934, April 2020. [Online]. Available: https://arxiv.org/abs/2004.
10934

[22] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
Proceedings of the 30th Conference on Computer Vision and Pattern
Recognition (CVPR). Honolulu, HI, USA: IEEE, July 2017, pp. 6517–
6525. [Online]. Available: https://doi.org/10.1109/CVPR.2017.690

[23] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: a Self-Gated
Activation Function,” arXiv, Tech. Rep. 1710.05941, October 2017.
[Online]. Available: https://arxiv.org/abs/1710.05941v1

[24] Z. Huang, J. Wang, X. Fu, T. Yu, Y. Guo, and R. Wang, “DC-SPP-
YOLO: Dense Connection and Spatial Pyramid Pooling Based YOLO
for Object Detection,” Information Sciences, vol. 522, pp. 241–258,
June 2020. [Online]. Available: https://doi.org/10.1016/j.ins.2020.02.067

[25] Z. Qin, Z. Li, Z. Zhang, Y. Bao, G. Yu, Y. Peng, and
J. Sun, “ThunderNet: Towards Real-Time Generic Object Detection
on Mobile Devices,” in Proceedings of the 17th International
Conference on Computer Vision (ICCV). Seoul, Korea (South):
IEEE, November 2019, pp. 6717–6726. [Online]. Available: https:
//doi.org/10.1109/ICCV.2019.00682

[26] Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, and
W. Zuo, “Enhancing Geometric Factors in Model Learning and
Inference for Object Detection and Instance Segmentation,” arXiv,
Tech. Rep. 2005.03572, September 2020. [Online]. Available: https:
//arxiv.org/abs/2005.03572

1372

